A Life Cycle Simulation Model for Exploring Causes of Population Change in Alewife (Alosa

 pseudoharengus)Gary A. Nelson ${ }^{1 *}$, Benjamin I. Gahagan ${ }^{1}$, Michael P. Armstrong ${ }^{1}$, Adrian Jordaan ${ }^{2}$, Alison Bowden ${ }^{3}$

${ }^{1}$ Massachusetts Division of Marine Fisheries, 30 Emerson Avenue, Gloucester, MA 01930
${ }^{2}$ Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003
${ }^{3}$ The Nature Conservancy, 99 Bedford Street, Suite 500, Boston, Massachusetts 02111
*Corresponding author
Email address: gary.nelson@mass.gov

Abstract

Over the last two decades, major changes in abundance and population characteristics of Alewife (Alosa pseudoharengus), an anadromous herring species, have been observed along the US Atlantic coast. Loss of spawning habitat, bycatch mortality in the directed pelagic fisheries, increased predation mortality by rebounding predators such as Striped Bass, changes in water flow and temperature affecting recruitment success, changes in ocean thermal habitat and direct and indirect effects of changes in zooplankton community have been expounded by different researchers as putative hypotheses for population changes in Alewife. Unfortunately, long-term, concurrently-measured time series of regional factors and direct measures of biological processes needed to elucidate underlying causes are severely lacking for Alewife. Therefore, we developed, calibrated and validated a mechanistic, spatially-explicit, full life-cycle simulation model that can be used to explore population responses of Alewife to various exogeneous drivers. Daily processes such as spawning, recruitment, mortality, exploitation, predation and movements are generated by using empirically-derived deterministic and stochastic relationships and time-series of environmental data linked to specific life stages. We demonstrate the use of the model as an investigative tool by simulating three hypotheses and comparing model results to observed trends in Alewife populations from southern New England.

1. Introduction

Alewife (Alosa pseudoharengus) is an ecologically-important, migratory, anadromous herring species that ranges along the Atlantic coast from Labrador to South Carolina (Loesch 1987). Alewife spend most of their life at sea but enter freshwater in spring to spawn (primarily in lakes and ponds). After spawning, Alewife adults exit the freshwater system and are presumed to move offshore and northward to summer feeding grounds. The large-scale movement makes them important forage for many marine and freshwater fish predators such as striped bass (Morone saxatilis), cod (Gadus morhua), and yellow perch (Perca flavescens)(Loesch, 1987) as well as birds (Dalton et al., 2009). In addition, they are a key link in the transfer of nutrients between freshwater to marine systems (Mullen et al., 1986; Walters et al., 2009; Dias et al., 2019).

Over the last two decades, major changes in abundance and population characteristics of Alewife have been observed along the US Atlantic coast (Schimdt et al., 2003; ASMFC 2017). In southern New England, dramatic increases in run abundances of Alewife occurred during the 1980s and 1990s, but precipitous declines occurred after 2000 (Figure 1A)(Nelson et al., 2011; Davis and Schultz, 2009). In addition, declines in mean body size (Figure 1B) and mean age (Figure 1C) of Alewife have been observed in Massachusetts rivers since the 1980s and currently are about 20-25 mm smaller than in the past (Nelson et al., 2011; ASMFC, 2017). Concurrently, increases in total mortality and decreases in recruiting age classes have been noted (Figure 1D)(Nelson et al., 2011; ASMFC, 2017).

Researchers have expounded many hypotheses to explain the observed changes in population characteristics. Hall et al. (2012) suggested that historical loss of spawning habitat and productivity due to damming of rivers has decreased the resiliency of Alewife populations to
increases in mortality sources such as harvesting. Direct in-river harvest has varied over time, but currently occurs only in Maine and a handful of other locations with approved management plans (ASMFC 2017). Moratoriums limit direct harvest throughout much of the species range. However, the occurrences of large incidental catches (bycatch) of Alewife in Atlantic Herring (Clupea harengus) and Atlantic Mackerel (Scomber scombrus) fisheries off Southern New England during fall and winter (Cournane et al. 2013) have been identified by many (ASMFC 2012; Hasselman et al. 2016; Palkovacs et al. 2013) as a potential cause of changes in abundances. Increased predation mortality by rebounding predator populations like Striped Bass (Morone saxatilis) and Double-Crested Cormorants (Phalacrocorax auritus) have been suggested as a major cause as well (Dalton et al., 2009; Davis et al., 2012; Savoy and Crecco, 1995; Schmidt et al., 2003). Other putative causes include variability in water temperature and flow affecting recruitment success (Tommasi et al., 2014), changes in ocean thermal habitat (Lynch et al. 2015; Nye et al. 2009) and direct and indirect effects of changes in zooplankton and phytoplankton composition (Kane 2011; Pershing et al., 2005), as a result of climate change. With many factors potentially affecting growth and survival, the complex nature of interactions between biotic and environmental factors, and regional differences in some of those factors, such as bycatch (Hasselman et al., 2016), it seems unlikely that a single factor is responsible for the observed changes in Alewife populations. Unfortunately, long-term, concurrently-measured time series of regional factors and direct measures of biological processes (e.g., egg survival, predation rates, etc.) needed to elucidate underlying causes are severely lacking for Alewife.

In the absence of long-term datasets, one method commonly used to understand complex biological and environmental relationships in natural systems is simulation modeling. Through simulation, population responses to changes in hypothesized causal mechanisms can be explored
and evaluated with models of population dynamics (Archambault et al., 2018; Watermeyer et al., 2018; Zeug et al., 2012). Such models allow researchers to conceptualize, describe and analyze population behavior and ask "what-if" questions about the real system. Because Alewife populations are under the influence of multiple environmental, predator and anthropogenic pressures at all life stages, exploration of causal factors requires the development of a life cycle model that incorporates relationships between the stressors and population dynamics. In this paper, we present a comprehensive, mechanistic, spatially-explicit, full life-cycle simulation model for predicting population responses of Alewife. The model is the first of its kind as processes such as spawning, recruitment, mortality, exploitation, predation and movements are generated by using empirically-derived deterministic and stochastic relationships and time-series of environmental data are linked to specific life stages. In addition, we validate the model by comparing predictions to data from published and unpublished studies not used in model calibration, and show a detailed analysis of model sensitivities. Further, we demonstrate how the model may be used as an investigative tool for exploring hypotheses related to population changes in Alewife.

2. Methodology

2.1. General Model Description

The simulation model, developed in R (R Development Core Team, 2016), is empirically-based and incorporates egg, yolk-sac larval, post-larval/young-of-the-year, juvenile (immature fish of age 1 and greater) and adult (mature) stages of Alewife, although the amount of detail varies among stages. The population structure is sex-specific, length-platoon (Goodyear 1989; 2002) and age-based meaning groups of individuals of a particular sex, length platoon, and
age are followed through time over a daily time step. The platoon-based structure is an intermediate stance between all individuals of the same age progressing identically (age-based model) and every individual have its own life path (individual-based model). The model is specified to represent the regional (ocean, estuary, river and lake), sex (female and male), maturity and length differences in population dynamics (Figure 2A). The model was developed to differentiate among habitats such that different causes of mortality and changes in productivity can be examined. Specifically, in the ocean, juveniles and adults grow and die due to lengthrelated natural mortality and can experience size-selective, seasonal bycatch mortality from the bottom trawl and mid-water trawl Atlantic herring fisheries. Mature adults migrate to lake spawning habitat through estuary and river systems (where they can experience in-river harvest) and undergo temperature-dependent batch spawning in the lake. Once spawning is completed, adults return to the ocean depending on the duration spent in each system (Figure 2A).

The sub-model for age-0 dynamics is more detailed (Figure 2B). Daily batches of eggs laid by all spawning individuals on the same day are followed through time. Temperature determines development of egg and yolk-sac stages. First-feeding post-larvae experience initial carrying capacity mortality and length-based natural mortality occurs thereafter. In the post-larval/young-of-the-year (YOY) stage, a bioenergetics model is used to grow length platoons using area temperatures as input and platoons emigrate based on size, temperature and rainfall. Duration of time spent in river and estuary is dependent on swimming speed and system length. All YOY are moved to the ocean region by January 1 of the following year.

2.2 Juvenile/Adult Sub-Model

In this section we provide full details of the model processes for the juvenile/adult submodel. All functional relationships are empirically-based and were taken from literature or estimated from unpublished field data. Descriptions of indexes are listed in Table 1, definitions of mathematical symbols are given in Table 2, and mathematical equations are listed in Table 3. Parameter values are listed in Appendix Table A. The general order of daily processes for the juvenile/adult model is:

Movement among habitats (when applicable) \rightarrow Harvest/bycatch (fishing) mortality + Natural mortality \rightarrow Growth

2.2.1 Population Structure

The female and male components of juvenile and adult subgroups were defined as having nine ages (last age is a plus-group) and one-hundred length platoons in each age. The number of length platoons was selected to obtain similar length frequency statistics (mean, standard deviation and percentiles) as an individual-based model that used identical growth rates.

2.2.2 Population Dynamics

The number of individuals (N) of juvenile and adult fish is modeled using an exponential decay equation specific to each region. While in the ocean, the number of fish surviving to the start of day d is dependent on bycatch mortality (F) and natural mortality (M) during day $d-1$ (Eq. JA.1). Length-dependent daily bycatch mortality is calculated from annual instantaneous bycatch mortality, user-specified proportions representing monthly fractions of the fishing pattern, and the number of days in a month. The daily F is further sub-divided in two fleetspecific daily bycatch mortalities based on landings ratios derived from Massachusetts Division of Marine Fisheries (MADMF) port sampling of the Atlantic herring fisheries (Eq. JA.2).

Length-dependent, fleet-specific daily F is calculated by multiplying fleet-specific daily F and fleet-specific selectivity-at-length values developed by using an equilibrium model and observed bycatch lengths (Supplementary Document Section 1).

Natural mortality experienced by fishes is often related to body size or weight (Pepin 1991; Lorenzen, 1996). For Alewife, we developed an equation to predict daily M from length that is used for all juvenile and adult fish regardless of sex or region. The Lorenzen (1996) weight-based M equation was altered to predict annual mortality from length by substituting a weight-length equation for Alewife sampled as bycatch (Eq. JA.3). Length-dependent daily M is calculated by dividing the estimated annual M from length by the days in a year (365). Migrating adult fish experience the same natural mortality rate while in estuary, river and lake systems, but additional harvest and predation mortality can occur in the river. Regional multipliers (δ) are available in Eqs. JA.1, JA. 4 and JA. 5 to adjust rates up or down if required. In the simulation, regional multipliers of 1.0 are used to obtain a baseline annual M of about 0.6 for ages 5-8 similar to Gibson and Myers (2003).

2.2.3 Growth

The body length of platoon p on day d is calculated from body length at the start of day $d-1$ and the daily growth increment $(\Delta \mathrm{L})$ (Eq. JA.6). $\Delta \mathrm{L}$ is calculated from the annual growth increment formulation of the von Bertalanffy equation (Quinn and Deriso, 1999)(Eq. JA.7) and a sine function that generates the fraction of annual growth that occurs on a given day of the year (Eq. JA.8). Because Alewife exhibit sexually-dimorphic growth rates, separate growth equations for female and male Alewife were derived (Supplementary Document Section 2).

2.2.4 Movement of Mature Fish to Estuary

Based on the University of Rhode Island Graduate School of Oceanography Fish Trawl Survey (https://web.uri.edu/fishtrawl/), mature Alewife appear to enter an estuary during late February-early March. To move mature fish from the ocean to the estuary region, the day of movement $(E S)$ is selected from a uniform distribution (Appendix A). All mature fish move together at the beginning of the selected day.

2.2.5 Movement of Mature Fish to River

Mature fish move through the freshwater system (into river and lake and return) using prior knowledge of temperature, swimming speed (v) and system length, and estimated spawning duration is determined when a platoon enters the lake. The number of fish that move into the river, and those that remain in the estuary, at the beginning of day d are calculated according to Eqs. JA. 9 and JA.10, respectively, where θ_{d} is the fraction migrating on day d. The mechanisms controlling when and how many alewife enter a river are unknown; therefore, θ_{d} is simulated over time. For a given year, the start day of a run is the day on which the average of the current daily temperature and temperatures from the prior four days is $\geq 9.5^{\circ} \mathrm{C}$. This method was developed to obtain start days within the ranges observed in the Monument River, MA (e.g., Sheppard and Bednarski 2015). The peak day and length of a run are selected randomly from uniform distributions (run peak: day 114-137; run length: 63-87 days). The start, peak and end days are input parameters to a triangle distribution (Eq. JA.11) and auto-correlated errors are added to the probabilities to mimic the fluctuating run trends observed in the Monument River (Eq. JA.12). The initial probabilities $\left(\mathrm{p}_{\mathrm{d}}{ }_{\mathrm{d}} \mathrm{s}\right)$ are standardized to 1 (Eq. JA.13). To ensure that all fish move into the river by the end of the run, θ_{d} is determined sequentially following Eq. JA.14.

The duration spent in the river (rdur) is determined by the river length, swimming speed and average body length (Eq. JA.15).

2.2.6 Movement of Mature Adults from River to Lake

The day of lake entry for each migrant group is calculated as the river entry day plus the time spent by the group in the river, and the entire group of fish moves together on that day.

2.2.7 Duration Spent in Lake

The duration that a group spends in the lake (sdur) depends on when it enters during the run (Kissel 1974). The duration is generated from an exponential equation fitted to Kissel (1974) data (Eq. JA.16) and random deviates (Eq. JA.17) are added to mimic the distributions of durations.

2.2.8 Reproduction

For a group of fish entering the lake, spawning activity commences on the day when the lake temperature reaches a minimum temperature threshold ($10.5^{\circ} \mathrm{C}$; Fay et al., 1983). If a group of fish arrives before the minimum threshold is reached, the first day of spawning is registered as the day when the minimum threshold is reached. If a group of fish arrives after the minimum threshold is reached, the first day of spawning (spday) is selected randomly from 4 to 8 days after lake entry as long as lake duration is >8 days; otherwise, the first spawning day is the day of lake entry. The number of spawning events is determined by dividing the days spent in the lake by the average number of days between spawned egg batches (Bdur). The next spawning event is determined by $B_{d u r}+1+d$ (day of spawning). Spawning occurs at the
beginning of the day and the total number of eggs spawned by a group on a given day $\left(E_{d}\right)$ is calculated by Eq. JA. 18 using literature values and a weight-length equation (Eq. JA.19).

2.2.9 Lake Emigration

The day on which adult moves out of the lake is calculated as lake entry day plus the number of days spent in the lake.

2.2.10 River and Estuary Emigration

The day on which movement to the estuary occurs is calculated as the river entry day plus $r d u r$. The day on which movement to the ocean occurs is calculated as the river exit day plus the the time spent in the estuary (edur). edur is calculated by using the same equation for $r d u r$ except estuary length (a user-specified parameter that can be adjusted to retain fish longer) is used (Eq. JA.15). Any fish remaining in the estuary are automatically moved to the ocean on day 1 of the following year.

2.2.11 Juvenile Maturation

On day 1 of each year, a fraction of juveniles in each platoon is matured according to sexspecific proportion-mature-at-length relationships (Eq. JA.20). The maturity-at-length relationships were estimated following Maki et al. (2001) using scale age and spawning check data collected from Monument River Alewife (full details in Supplementary Document Section 3).
2.3 Egg, Yolk-sac Larval, Post-larval/YOY Sub-model

In this section, we provide full details of the model processes. Definitions of mathematical symbols and mathematical equations for the egg-YOY sub-model are given in Tables 4 and 5, respectively. Parameter values are listed in Appendix B. The general order of daily processes for the egg-YOY model is the same as the juvenile/adult model. The sub-model consists of egg, yolk-sac, and post-larval/YOY stages.

2.3.1 Population Dynamics

A batch (b) of eggs (all eggs laid by spawning adults on a given day) is followed through time and survival is modeled by using an exponential decay equation (Eq. EY.1). Daily $M^{e g g s}$ is drawn randomly from a uniform distribution with range 0.14-0.30 (Appendix B) developed from the literature (Supplemental Document Section 4). The day on which a batch of eggs hatch is determined using a hatch time (h) and temperature (T) relationship (Eq. EY.2) developed from Edsall (1970)(full details in Supplementary Document Section 5). The rate of development to hatching is dependent on daily temperature and the fraction of the development that occurs on a given day is calculated as $1 / h$. Hatching occurs on day d according to Eq. EY.3. The number of yolk-sac larvae that hatch is derived from the number of surviving eggs reduced for hatching success (Eqs. EY. 4 and EY.5). The hatching success versus temperature relationship was developed from Edsall (1970)(full details in Supplementary Document Section 6). Survival of yolk-sac larvae also follows the exponential decay equation and a multiplier is available to rescale M if desired (Eq. EY.5). The day on which complete yolk-sac absorption occurs $(d(y))$ is derived from the inverse of a days-to-yolk absorption and temperature relationship created from literature values (Eqs. EY. 6 and EY.7)(full details in Supplementary Document Section 7). Multipliers are available to rescale M in the egg and yolksac stages (Eqs. EY. 1 and EY.5).

2.4 Post-Larvael YOY Population Dynamics

2.4.1 Initial Density-Dependent Mortality

Population growth is limited by a simple density-dependent function. On the first day that yolk-sac larvae become post-larvae (Eq. EY.8), the number is further reduced by a batch carrying capacity $\left(k_{b}\right)$ derived from a user-specified number of post-larvae per km^{2} that a lake can hold, the lake area $\left(\mathrm{km}^{2}\right)$ and the total number of batches (Eqs. EY. 9 and EY.10)(full details in Supplementary Document Section 8).

2.4.2 Length Platoons

The number of post-larvae in each batch is distributed into length platoons $\left(L_{p}\right)$ on the first day. The length bins are first created by using the minimum and maximum observed lengths of post-larval Alewife (Eq. EY.11), density frequencies from a log-normal distribution are generated using the mean of log-transformed length and standard deviation of log values (Eq. EY.12), and then the number of post-larvae is assigned across length bins by randomly sampling from a multinomial distribution parameterized with probability π (Eqs EY. 13 and EY.14))(full details in Supplementary Document Section 9).

2.4.3 Population Dynamics

A batch of post-larvae is followed through time and the decline in numbers is modeled using the exponential decay model with a stage multiplier (Eq. EY.15) where $M^{\text {Post }}$ is lengthdependent daily instantaneous natural mortality (Eq. EY.16). Natural mortality for fish $\leq 22 \mathrm{~mm}$ total length (TL) is dependent on length and water temperature, whereas it is only length-
dependent for fish $>22 \mathrm{~mm}$ TL. These relationships were developed from and calibrated with published literature values (full details in Supplementary Document Section 10).

2.4.4 Growth in Lake

The body length of platoon p on day d is calculated from body length at the start of day $d-1$ and the daily growth increment derived by using the Alewife bioenergetics model of Stewart and Binkowski (1986) with improvements by Klumb et al. (2003). This model is based on an energy balance equation, $\Delta B=C-(R+S+E R+U)$, where ΔB is the daily increase in body weight, C is daily consumption, R is energy lost through metabolism, S is energy lost to specific dynamic action, $E R$ is energy lost in egestion, and U is energy lost in excretion. The definitions of symbols and the equations governing the functional relationships are given in Tables 6 and 7, respectively. Parameter values are listed in Appendix C. Daily consumption and standard metabolism are the only temperature-dependent processes in the model.

In the growth sub-model, length of platoon p is first converted to weight using lengthweight equations depending on body length (Eq. BE.1). Daily consumption (joules• $\mathrm{g}^{-1} \cdot \mathrm{~d}^{-1}$) by platoon p is then calculated following Eq. BE. 2 where $C_{\max }$ is the maximum specific feeding rate $\left(\mathrm{g} \cdot \mathrm{g}^{-1} \cdot \mathrm{~d}^{-1}\right)$ dependent on size (Eq. BE.3), EDP is the prey energy density (joules g^{-1}; calculated from prey specific energy densities for the average stomach contents of Alewife post-larvae in Cohen (1976), $p r$ is the proportion of maximum consumption dependent on body length and abundance (Eqs. BE. 4 and BE.5), and $f\left(T_{d}\right)$ is the temperature-dependence function for coldwater species (Thornton and Lessem, 1978)(Eqs. BE.6- BE.12). The $p r$ and length L_{p} relationships (Eq. BE.4) were developed and calibrated to obtain length ranges described in several published studies and unpublished field data from Massachusetts and Rhode Island
sampling programs that occurred in rivers, lakes, estuaries and ocean waters (full details in Supplementary Document Section11). A relationship between slope of the pr relationship and number of young on a given day was further developed to simulate density-dependent growth (Eq. BE.5)(full details in Supplementary Document Section12). Regional growth multipliers are included and the estuary region multiplier $\left(\Omega_{2}\right)$ is set to 1.40 to match size data of young-of-theyear Alewife from Narragansett Bay, Rhode Island.

Respiration is calculated through a standard metabolism-body weight relationship, activity multiplier and a temperature dependence function (Eq. BE.13) where R_{p} is specific rate of respiration (joules• $\mathrm{g}^{-1} \cdot \mathrm{~d}^{-1}$) for platoon $p, A C T$ is a length-dependent activity multiplier to obtain active metabolism (Eqs. BE. 14 and BE.15), $f\left(T_{d}\right)$ is the temperature dependence function (Eq. BE 16), and $O C$ is the oxycalorific coefficient used to convert grams to joule equivalents. Egestion rate (ER; joules $\bullet \mathrm{g}^{-1} \bullet \mathrm{~d}^{-1}$) is calculated assuming a constant fraction of consumption (Eq. BE.17). Excretion (U; joules• $\mathrm{g}^{-1} \bullet \mathrm{~d}^{-1}$) is derived assuming a constant fraction of assimilated energy (Eq. BE.18), and specific dynamic action (SDA) is calculated assuming a constant fraction of assimilated energy lost (Eq. BE.19).

Daily body weight increase is derived via Eqs BE.20- BE.22. The energy density (ED; joules $\cdot \mathrm{g}^{-1}$) of Alewife to convert joules to grams is calculated from seasonal relationships between ED and body length (Eq. BE.22). To obtain the daily change in length, weight is converted to length by using length-weight equations (Eq. BE.23).

Because the observed daily lake temperature may not match the temperature actually selected by the young Alewives, an optimal temperature-length relationship is used to replace the observed lake temperature (usually measured at the surface) when it exceeds the optimal temperature (Eq. BE.24). This assumes YOY are actively seeking optimal temperatures.

2.4.5 Emigration from Lake

Based on results of Gahagan et al. (2010), movement of YOY from the lake is dependent on body size, temperature and rainfall. The first day of emigration can begin when the body length of any platoon exceeds the user-specified migration size. The end day of emigration is randomly picked to occur between day 304 and day 334 . The number of fish that emigrate at the beginning of day d is calculated according to Eq. EY. 17 in Table 5 and the fraction emigrating is determined using temperature and rainfall relationships developed from raw data of Gahagan et al. (2010) (Eqs. EY.18-EY.20)(full details in Supplementary Document Section 13). Number of fish remaining in the lake is determined by Eq. EY.21.

2.4.6 Movement from River to Ocean

The amount of time spent in the river ($r d u r$) and estuary (edur) is determined from swimming speed ($\mathrm{V} ; \mathrm{cm} \mathrm{s}^{-1}$) of YOY and system length (Eqs. EY.23- EY.24). Any remaining YOY in the estuary are moved to the ocean region on January 1 of the following year and the YOY become immature age 1 fish. Numbers are split between sexes using a constant proportion of females (p P).

2.4.7 Mortality in River, Estuary and Ocean

Mortality is calculated following Eq. EY.16.

2.4.8 Growth in River, Estuary and Ocean

Daily growth in the river, estuary and ocean is calculated by using the bioenergetics submodel, the daily temperature from each region and the optimal temperature-body size relationship.

2.5. Global Sensitivity Analysis

The sensitivities of model outputs to input parameters were explored by using the method of Morris (1991). This global sensitivity method was used to identify parameters with a range of negligible to strong impacts. In addition, the Morris method identifies linear and nonlinear effects. The Morris method consists of several randomized one-at-a-time experiments in which the effect of a parameter on the model output is assessed while keeping the other parameters constant (van Houwelingen et al., 2011). The first step is to randomly draw a set of starting values within defined ranges of possible values for all input parameters, running the model using these initial starting values, and saving the model output. The second step changes the value of one parameter by a random interval (all other parameter values are those from the last run) and the model output is then compared the previous run. For comparison, the elementary effect of the $\mathrm{i}^{\text {th }}(E E)$ input parameter is calculated by

$$
E E_{i}\left(x^{t}\right)=\left(y\left(x^{t}\right)-y\left(x^{t-1}\right)\right) / \pm \Delta_{i}
$$

where y is the model output variable of interest, t is the current run and Δ_{i} is the random change interval based on $\mathrm{p}=4$ (See van Houwelingen et al., 2011 for more details). The process is repeated for the remaining variables. The entire procedure is repeated r times ($r=10$ in this paper), each time with a different set of initial starting values. The total number of runs needed
for the analysis are $r(n+1)$ where n is the number of parameters. The mean $\left(\mu^{*}\right)$, absolute mean (μ) and standard deviation (σ) are then calculated for the $i^{\text {th }}$ input parameter by

$$
\begin{aligned}
& \mu_{i}^{*}=\sum_{j=1}^{r} E E_{i, j} / r \\
& \mu_{i}=\sum_{j=1}^{r}\left|E E_{i, j}\right| / r \\
& \sigma_{i}=\sqrt{\sum_{j=1}^{r}\left(E E_{i, j}-\mu_{i}^{*}\right)^{2} / r}
\end{aligned}
$$

The interpretation of a parameter's effect is based on the coupled μ and σ values. Low μ and σ values imply a parameter has a low impact on the model output, high μ and low σ imply a parameter has high linear impacts on the model, low μ and high σ values imply a parameter has high nonlinear impacts on the model, and high μ and high σ values imply a parameter has high nonlinear impacts on the model and/or strong interactions with other parameters (Loubiere et al., 2016). We explored the sensitivity of only seventy-five parameters because valid minimummaximum ranges could not be derived for some given lack of literature (e.g., the temperature function parameters used in the bioenergetics model) or changes in individual parameters could not be examined independently (e.g., the polynomial relationship parameters between hatching success and temperature) without producing non-sensical values. The list of parameters with corresponding ranges for the uniform distributions are provided in Appendix Table D.1. Ranges were derived mainly from literature, but when lacking, ranges were also derived from standard error estimates ($\pm 2 \mathrm{SE}$) of parameters (e.g., male and female von Bertalanffy growth) or from within a biologically-realistic range based on our best judgement (e.g., p)).

For each run, the model was initialized with an equilibrium population of juveniles and adults (full details in Supplementary Document Section 14). The model was then run for 30
years (duration population reaches equilibrium with new parameters) using regional temperature and rainfall data from 1962-1992 (obtained from various data sources or developed from air temperature for the region of Narragansett Bay through Southern Massachusetts (full details in Supplementary Document Sections 15-17)) . The last year's derived values of run size, mean length of adults in the river, sex ratio on the run, egg abundance, YOY cumulative river abundance, and age-1 mean length on January 1 were recorded and used to examine input parameter sensitivities.

2.6. Model Validation

Confidence in the performance of the model may be evaluated in terms of its ability as a predictive tool (Balci, 1998). To validate model results, we compared predicted dates of run starts, sex-specific mean ages on the run, ranges of days of first hatching and mean total length of age 1 fish in spring to published and unpublished field observations not used in the calibration of the model. The model was run 50 times with only baseline natural mortality, and temperature and rainfall data from 1962-2016, and the mean and $95^{\text {th }}$ percentiles of the outputs were used for comparison.

2.7. Exploration of Hypotheses of Population Changes

To demonstrate the model's potential to explore factors that may have caused historical changes in Alewife population characteristics, we investigated three spatial mortality hypotheses: historical responses were caused by 1) in-river harvest only, 2) in-river striped bass predation and harvest, and 3) ocean by-catch in the Atlantic herring fishery and in-river harvest. We expect population responses to differ among these hypotheses because most of the population is
vulnerable to incidental capture in the ocean region, whereas only immigrating, mature adults are vulnerable to predation by Striped Bass in the river region. Time series of mortality rates attributed to each component were created from existing data. In-river exploitation rates from the Monument River (Nelson et al., 2011) were used to represent the fraction of adults harvested in the river system. No harvest was assumed after 2005 because a moratorium in Massachusetts has been in place. Since Striped Bass prey on migrating river herring (e.g., Davis et al., 2012), predation mortality rates were associated with the river region and represented the daily fraction of the adults eaten in the river system. Values were derived from data on Striped Bass abundance and estimates of instantaneous total mortality from a statistical escapement-at-age model. Bycatch mortality rates, representing the fraction of ocean population harvested by incidental capture, were similarly derived by using New England Atlantic herring fishery landings (see section 18 of Supplementary Document for full details). For each scenario, the model was run 75 times (runtime: ~ 65 hours with Intel i7-6700 CPU @ 3.40 GHz) for 55 years with water surface temperature and rainfall for years 1962-2016 (trends related to climate change are evident in the time series; Supplemental Document Section 15-17). The model was initialized at the start of each run with the equilibrium population of juveniles and adults described above.

3. Results

3.1 Global Sensitivity

Results of the sensitivity analysis indicated that the model is highly non-linear and there are strong interactions among parameters (Figure 3). The top twenty parameters based on μ^{*} that play a significant role in the magnitude of fluctuations in model output are shown in Table 8. The run size and mean length of adults on the run are sensitive primarily to changes in
parameters from the bioenergetics sub-model, juvenile/adult mortality equations, postlarvae/YOY mortality and adult maturity (Table 8). The run sex ratio is most sensitive to changes in the $p q$ (proportion used to split YOY into sexes), and maturity and bioenergetics model parameters (Table 8). Egg abundance is most sensitive to parameter changes in the bioenergetics model, juvenile/adult mortality equation and post-larvae/YOY mortality equation. Abundance of YOY is very sensitive to changes in lake carrying capacity, post-larvae/YOY mortality and bioenergetics model parameters (Table 8). The mean length of age-1 fish on January 1 is sensitive primarily to changes in the bioenergetics model parameters (Table 8).

3.2 Model Validation

Figure 4 shows the model output and data from published and unpublished field data. Model predictions of run starts matched well ranges of run starts observed in the Parker River, Massachusetts during 1972-1978 (Cole et al., 1976; Cole et al., 1978), in the Annaquatucket River, Rhode Island during 1971 and 1972 (Richkus, 1974) and in multiple Massachusetts systems monitored in 2014 (Rosset et al., 2017)(Figure 4A). The predicted mean age of female and male Alewife during 1972-1978 agreed well with observed mean ages in the Parker River (Cole et al., 1976; Cole et al., 1978) (Figure 4B). The range of model predictions of the first day of hatching was similar to those observed in field studies (Yako, 1998; Iafrate and Oliviera, 2008; Devine, 2018) (Figure 4C). The model predicted well the mean lengths and 95% length percentiles of age-1 Alewife compared to length data recorded in the MA DMF trawl survey and Atlantic herring bycatch sampling during 2012-2016 (Figure 4D). Overall, the model produced realistic trends and ranges of population characteristics observed historically.

3.3 Exploration of Hypotheses of Population Changes

Generally, harvest mortality has changed in an inverse relationship to recently dominant striped bass predation and bycatch mortality (Figure 5). All hypotheses produced similar trends in run size, mean length and mean age through 1990, but changes in population characteristics were larger under hypotheses 2 (in-river harvest plus Striped Bass mortality) and 3 (in-river harvest plus bycatch mortality) because of higher combined mortalities (Figure 6). The largest decline in run size occurred when bycatch mortality was present, but the simulated decline began much earlier (1991) than was observed in Monument River (Figure 6). Under hypotheses 2 and 3, the model simulated declines in mean total length starting in 1991, which was close to observed start years (1989-1990), but similar magnitudes in body size reduction ($20-30 \mathrm{~mm} \mathrm{TL}$) as observed in the Monument River were not reproduced (Figure 6). The model under hypotheses 2 and 3 predicted declines in mean age of females, and the trends and magnitudes under each hypothesis partially matched the trends and magnitudes observed in the Monument River (Figure 6).

4. Discussion

We have developed, calibrated and validated a full life-cycle model for Alewife for evaluating hypotheses of potential causal factors affecting population dynamics. Key features of the model are that it (1) is structured sufficiently to provide realistic dynamics without being individually-based; (2) includes the full life cycle; (3) includes a realistic growth model for YOY Alewife; (4) includes environmental drivers that are known to influence growth, survival and migration processes during the first year of life; (5) has a generalized spatial structure and (6) incorporates exploitation and predation. This model should improve Alewife restoration efforts
by providing a tool to better understand factors influencing demographic trends and the consequences of potential management actions or environmental change.

The model is the first of its kind for Alewife and is an advancement towards understanding the impact of exogeneous factors on the population dynamics of Alewife; however it is generic and is not a complete representation of all processes that may affect Alewife population dynamics. For example, there are currently no links between prey abundance and growth of juvenile/adults and YOY Alewife or coupling between adult ocean migration and environmental variables. In some aspects, we had to develop methods that would simulate trends in population characteristics similar to those observed in the field without understanding underlying processes. In other aspects, processes had to be simplified or left out, and many parameters were assumed constant because of lack of data. As data become available, additional details of underlying dynamics may be easily added given the flexible sub-model structures and coding in the R language.

We have demonstrated the power of the model to explore population responses by simulating three hypotheses concerning spatial exploitation and predation. Under these simple hypotheses, the model did predict similar trends in population characteristics as those observed historically in southern New England runs, but the timing and/or magnitudes of change were not always replicated. This is not surprising given the limited hypotheses examined. These results stress the fact that the reasons for the dramatic changes observed in the field are likely more complex. To that end, the model has the ability to evaluate complex hypotheses if sufficient data are available representing the specific aspects of growth and survival in a system. The population consequences of management actions pertaining to juvenile/adult Alewife and its predators can be simulated through the link with mortality. The effects of climate change, expected to be a
major stressor on Alewife populations (Hare et al., 2016; Lynch et al., 2015), on population responses could be examined because water temperature is directly coupled to the start of adult migration, spawning initiation, egg hatching rate, yolk-sac absorption, growth, mortality and emigration of post-larval/YOY stages, while rainfall is linked to emigration of YOY.

For instance, if forecasts of water temperatures are available, the consequences of temperaturerelated changes in reproductive processes (e.g., earlier spawning times and/or hatching times) on dynamics that can impact future recruitment (e.g., Lowerre-Barbieri et al., 1998) could be explored. Similarly, if forecasts of rainfall are available, the consequences of potential changes in YOY emigration timing as rainfall changes on similar dynamics and resulting processes could be examined.

The sensitivity analysis showed that the most influential parameters in the model are those associated with the post-larvae/YOY bioenergetics growth model and the juvenile/adult/YOY mortality relationships. It is important that those parameters have a low degree of uncertainty associated with them to allow for accurate prediction. Unfortunately, measures of uncertainty are not available for most parameters used in the model because many authors did not include statistics associated with model parameters (e.g., Stewart et al., 1983), although some did include information on model fit (e.g., R${ }^{2}$; Pepin, 1991) (Appendix D). For parameters with measures of uncertainty (e.g., coefficients of variation), precision appears reasonably high (CVs <20\%) in most cases. The lack of measures of uncertainty for many parameters does not mean the model predictions will be inaccurate. Stewart et al. (1983) showed the bioenergetics model produces realistic growth predictions, and will likely do so under a wide range of scenarios, because most parameters were determined through laboratory studies. In addition, the $p r$ relationships and Ω_{2} were calibrated to field observations of post-larvae and

YOY sizes, and predictions were validated against data not used in the calibration (Figure 4D). Similarly, we are confident that the mortality relationships will also produce realistic values because they were calibrated to literature-based observations of survival.

There are many biotic and environmental drivers affecting productivity of young Alewife while in freshwater system (Kosa and Mather 2001; Yako et al., 2002). Based on the sensitivity analysis results, the model outputs reflecting system productivity (e.g., YOY abundance) were most affected by changes in parameters of the growth and mortality components (including the carrying capacity parameter). Although we developed components of the relationship from limited data, in reality, they are simple and generic. It is unlikely that more detailed lake-specific predictions of production could be made unless data on important abiotic and environmental drivers are known for each system. Ultimately, lake-specific differences in drivers will result in varying levels of production that will determine individual population resilience to anthropogenic and environmental stressors.

A benefit of creating an empirically-based life cycle model is learning where gaps in our current knowledge of biological processes and population dynamics are. More detailed information on Alewife population dynamics are needed at all life stages. Some areas of necessity include Alewife-specific egg and yolk-sac mortality rates, relationships between YOY growth and prey, and environmental and physiological influences that affect adult immigration and YOY emigration. Some of the biggest gaps in our knowledge pertain to the times YOY and adults spend in an estuary and ocean. For YOY, there is some general information on growth and broad habitat use between freshwater and estuarine environments (Turner and Limburg 2012; Turner and Limburg 2016). However, no information exists on the duration spent in an estuary, prey species eaten in estuaries and the ocean, spatial distribution, mortality and movement
patterns that would help improve our understanding of YOY dynamics and allow us to enter more detail into the model. For adults, general migration patterns are assumed (north into the Gulf of Maine after spawning, south to waters south of Cape Cod in the winter (Munroe, 2002)), but details on movements and spatial distribution for individual stocks or regional groups are needed to help resolve a multitude of fishery and climate change impacts (ASMFC 2012; Hasselman et al. 2016; Hare et al. 2016; Lynch et al. 2015; Palkovacs et al. 2013). This is particularly important since migration routes will influence the exposure of Alewife to fisheries impacts over space and time (Bethoney et al., 2017).

Over the past ten years, Alewife have been the focus of two Endangered Species Act Listing Determinations, a Benchmark Stock Assessment, and Stock Assessment update. The resounding conclusion of all of these examinations is that status determination, management and recovery of this species is hindered by a lack of data and tools. This model represents a significant step forward in our ability to understand Alewife population dynamics and should improve restoration efforts. Still, until deeper understanding of underlying processes and longterm time series of environmental and biological measures are available, it may be impossible to identify primary factors responsible for the historical changes in Alewife populations. New technologies, including bio-logging (e.g., Dean et al., 2017), and additional data collected across the life cycle will be key to closing the data gaps and making Alewife assessment and management a more data-rich effort.

Acknowledgements

Funding for this project was provided, in part, by the Atlantic States Marine Fisheries Commission and by Sportfish Restoration Grant F-57R. We thank the following individuals and institutions for providing Alewife data: Matthew Devine of the University of MassachusettsAmherst, John Sheppard, Bradley Schondelmeier and the Age and Growth staff of Massachusetts Division of Marine Fisheries, Phil Edwards of the Rhode Island Department of Fish and Wildlife, Kurt Gottschall of the Connecticut Department of Environmental Protection and the University of Rhode Island Graduate School of Oceanography. All members of the NOAA funded Linking Lifestages project provided helpful comments during the initial stages of model creation. We also thank two anonymous reviewers for helpful comments that improved the manuscript. The entire model code and data used in this study are available upon request from the senior author.

References

Archambault, B., Rivot, E., Savina, M., Le Pape, O., 2018. Using a spatially structured life cycle model to assess the influence of multiple stressors on an exploited coastal-nurserydependent population. Estuar. Coast. Shelf Sci. 201: 95-104. https://doi.org/10.1016/j.ecss.2015.12.009

ASMFC (Atlantic States. Marine Fisheries Commission), 2012. River herring benchmark stock assessment Volume I. Stock Assessment Report 12-02 of the Atlantic States Marine Fisheries Commission, Washington, DC.

ASMFC (Atlantic States. Marine Fisheries Commission), 2017. River Herring Stock Assessment Update, Volume I: Coastwide Summary. 172 p. Arlington, VA.

Balci, O., 1998. Verification, Validation and Testing. In: Handbook of Simulation: Principles, Methodology, Advances, Applications and Practice, J. Banks (ed.), John Wiley and Sons, Inc. New York, New York, p.335-393.

Bethoney, N. D., Schondelmeier, B. P., Kneebone, J., Hoffman, W. S., 2017. Bridges to best management: effects of a voluntary bycatch avoidance program in a mid-water trawl fishery. Mar. Pol. 83: 172-178. https://doi.org/10.1016/j.marpol.2017.06.003.

Burbidge, R. G., 1974. Distribution, growth selective feeding, and energy transformations of young-of-the-year blueback herring, Alosa aestivalis (Mitchill), in the James River, Virginia. Trans. Am. Fish. Soc.103: 297-311. https://doi.org/10.1577/15488659(1974)103<297:DGSFAE>2.0.CO;2

Cole, C. F., Libey, G. S., Huber, M. E., Jimenez, D., 1976. Optimal alewife run management, Parker River, Massachusetts. Final Report to U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. Project AFC-12. 37 p.

Cole, C. F., Essig, R., Sarnelle, O., 1978. Biological investigation of the alewife population, Parker River, MA. Anadromous Fish Act Yearly Report to U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. Project AFC-16-2. 16.p.

Cournane, J. M., Kritzer, J. P., Correia, S. J., 2013. Spatial and temporal patterns of anadromous alosine bycatch. Fisheries Research 141: 88-94.
https://doi.org/10.1016/j.fishres.2012.08.001
Dalton, C. M., Ellis, D., Post, D. M. 2009. The impact of double-creasted cormorant (Phalacrocorax auritus) predation on anadromous alewife (Alosa pseudoharengus) in south-central Connecticut, USA. Can. J. Fish. Aquat. Sci. 66: 177-186. https://doi.org/10.1139/F08-198

Davis, J. P., Schultz, E. T. 2009., Temporal shifts in demography and life history of an anadromous alewife population In Connecticut. Mar. Coast. Fish. Dyn. Manage and Ecosystem Science. 1: 90:106. https://doi.org/10.1577/C08-003.1

Davis, J. P., Schultz, E. T., Vokoun, J. C., 2012. Striped Bass consumption of Blueback herring during vernal riverine migrations: does relaxing harvest restrictions on a predator help conserve a prey species of concern? Marine and Coastal Fisheries Dynamics, Management and Ecosystem Science 4: 239-251.
https://doi.org/10.1080/19425120.2012.675972.
Dean, M. J., Hoffmans, W. S., Zemeckis, D. R., Armstrong, M. P., 2017. Fine-scale diel and gender-based patterns in behaviour of Atlantic cod (Gadus morhua) on a spawning ground in the Western Gulf of Maine. ICES J. Mar. Sci. 71: 1474-1489. https://doi.org/10.1093/icesjms/fsu040.

Diaz, B. S., Frisk, M. G., Jordaan, A., 2019. Opening the tap: increasing riverine connectivity strengthens marine food web pathways, PLoS ONE 14(5):e0217008.
https://doi.org/10.1371/journal. pone.0217008.
Edsall, T. A., 1970. The effect of temperature on the rate of development and survival of alewife eggs and larvae. Trans. Am. Fish. Soc. 99: 376-380. https://doi.org/10.1577/15488659(1970)99<376:TEOTOT>2.0.CO;2

Ellis, D., Vokoun, J. C., 2009. Earlier spring warming of coastal streams and implications for alewife migration timing. N. Am. J. Fish. Manage. 29: 1584-1589. https://doi.org/10.1577/M08-181.1

Fay, C.W., Neves, R. J., Pardue, G. B., 1983. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic) - alewife/blueback herring. U. S. Fish and Wildlife Service, Division of Biological Services, FWS/OBS.82/11.9. U. S. Army Corps of Engineers TR EL-82-04. 25 p.

Gahagan, B. I., Gherard, K. E., Schultz, E. T., 2010. Environmental and endogeneous factors influencing emigration in juvenile anadromous alewives. Trans. Am. Fish. Soc. 139: 1069-1082. https://doi.org/10.1577/T09-128.1

Ganias, K., Divino, J. N., Gherard, K. E., Davis, J. P., Mouchlianitis, F., Schultz, E. T., 2015. A reappraisal of reproduction in anadromous alewives: determinate versus indeterminate fecundity, batch size, and batch number. Trans. Am. Fish. Soc. 144: 1143-1158. https://doi.org/10.1080/00028487.2015.1073620

Gibson, A. J. F., Myers, R. A., 2003. A statistical, age-structured, life-history-based stock assessment model for anadromous Alosa. Pages 275-283 in Limburg, K. E., Waldman, J. R., editors. Biodiversity, status, and conservation of the world's shads. American Fisheries Society Symposium 35, Bethesda, Maryland.

Goodyear, C. P., 1989. LSIM - a length-based fish population simulation model. NOAA Tech. Memo. NMFS-SEFC 219. 53 p.

Goodyear, C. P., 2002. Negative implications of large minimum size regulations on future mean size at age: an evaluation using simulated striped bass data. Am. Fish. Soc. Sym. 30: 217229.

Hall, C. J., Jordaan, A., M. G. Frisk., 2012. Centuries of anadromous forage fish loss: consequences for ecosystem connectivity and productivity. Bioscience 62 (8): 723-731. https://doi.org/10.1525/bio.2012.62.8.5

Hare, J.A., Morrison, W. E., Nelson M. W., Stachura, M. M., Teeters, E. J., Griffis, R. B., Alexander, M. A., Scott, J. D., Alade, L., Bell, R. J., Chute, A. S., Curti, K. L., Curtis, T.H.,Kircheis, D., Kocik, J. F., Lucey, S. M., McCandless, C. T., Mike, L. M., Richardson, D. E., Robillard, E., Walsh, H. J., McManus, M. C., Marancik, K. E., Griswold, C. A., 2016. A vulnerability assessment of fish and invertebrates to climate change on the Northeast U. S. Continental Shelf. PLoS ONE 11(2): e0146756. . https://doi.org/10.1371/journal.pone. 0146756.

Hasselman, D. J., Anderson, E. C., Argo, E. E., Bethoney, N. D., Gephard, S. R., Post, D. M., Schondelmeier, Schultz, T. F., Willis, T. V., Palkovacs, E. P., 2016. Genetic stock composition of marine bycatch reveals disproportional impacts on depleted river herring genetic stocks. Can. J. Fish. Aquat. Sci. 73: 951-963. https://doi.org/10.1139/cjfas-20150402.

Iafrate, J., Oliveira, K., 2008. Factors affecting migration patterns of juvenile river herring in a coastal Massachusetts stream. Environ. Biol. Fish. 81:101-110. https://doi.org/10.1007/s10641-006-9178-1.

Kane, J., 2011. Multiyear variability of phytoplankton abundance in the Gulf of Maine. ICES J. Mar. Sci. 68: 1833-1841. https://doi.org/10.1093/icesjms/fsr122.

Kissel, G. W., 1974. Spawning of the anadromous alewife, Alosa pseudoharengus, in Bride Lake, Connecticut. Trans. Am. Fish. Soc. 103: 312-317. https://doi.org/10.1577/15488659(1974) $103<312$:SOTAAA $>2.0 . \mathrm{CO} ; 2$.

Kitchell, J. F. Stewart, D. J., Weininger, D., 1977. Applications of a bioenergetics model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). J. Fish. Res. Board Can. 34: 1922-1935. https://doi.org/10.1139/f77-258.

Klumb, R. A., Rudstam, L. G., Mills, E. L., 2003. Comparison of alewife young-of-the-year and adult respiration and swimming speed bioenergetics model parameters: implications of extrapolation. Trans. Am. Fish. Soc. 132: 1089-1103. https://doi.org/10.1577/T03-038.

Loesch, J. G., 1987. Overview of life history aspects of anadromous alewife and blueback herring in freshwater habitats. In: M. J. Dadswell et al., eds., Common Strategies of Anadromous and Catadromous Fishes. Am. Fish. Soc. Symp. 1: 89-103.

Lorenzen, K., 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J. Fish Biol. 49: 627642. https://doi.org/10.1111/j.1095-8649.1996.tb00060.x.

Loubiere, P., Jourdan, A., Siarry, P., Chelouah, R., 2016. A sensitivity analysis method for driving the Artificial Bee Colony algorithm's search process. Appl. Soft. Comput. 41:515-531. https://doi.org/10.1016/j.asoc.2015.12.044.

Lowerre-Barbieri, S. K., Lowerre, J. M., Barbieri, L. R. 1998. Multiple spawning and the dynamics of fish populations from an individual-based simulation model. Can. J. Fish. Aquat. Sci. 55: 2244-2254.

Lynch, P. D., Nye, J. A., Hare, J. A., Stock, C. A., Alexander, M. A., Scott, J. D., Curti, K. L., Drew, K., 2015. Projected ocean warning creates a conservation challenge for river herring populations. ICES J. Mar. Sci. 72: 374-387. https://doi.org/10.1093/icesjms/fsu134.

Maki, K. L., Hoenig, J. M., Olney, J. E., 2001. Estimating proportion mature at age when immature fish are unavailable for study, with applications to American shad in the York River, Virginia. N. Am. J. Fish. Manage. 21: 703-716. https://doi.org/10.1577/15488675(2001)021<0703:EPMAAW>2.0.CO;2.

Morris, M. D., 1991. Factorial sampling plans for preliminary computational experiments. Technometrics 33: 161-174. http://dx.doi.org/10.1080/00401706.1991.10484804.

Mullen, D.M., Fay, C. W., Moring, J. R., 1986. Alewife/Blueback Herring. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (North Atlantic series) USDI Fish and Wildlife Service. Biological Report 82(11.58). 22 pp.

Munroe, T. A., 2002. Herrings. Family Clupeidae: Alewife. In: Collette, B. B., Klein-MacPhee, G. (eds.), Bigelow and Schroeder's Fishes of the Gulf of Maine, $3^{\text {rd }}$ edition. Smithsonian Institution Press, Washington, DC. pp. 118-125.

Nelson, G. A., Brady, P. D., Sheppard, J. J., Armstrong, M. P., 2011. An assessment of river herring stocks in Massachusetts. Massachusetts Division of Marine Fisheries Tech. Rep. TR-46. 81 p. https://www.mass.gov/files/documents/2016/08/wi/tr-46.pdf.

Nye, J. A., Link, J. S., Hare, J. A., Overholtz, W. J., 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393: 111-129.
https://doi.org/10.3354/meps08220.

Palkovacs, E. P., Hasselman, D. J., Argo, E. E., Gephaerd, S. R., Limburg, K. E., Post, . M.m Schultz, T. F., Willis, T. V., 2013. Combining genetic and demographic information to prioritize conservation efforts for anadromous alewife and blueback herring. Evol. Appl. 7: 212-216. https://doi.org/10.1111/eva. 12111.

Pauly, D., 1984. Length-converted catch curves. A powerful tool for fisheries research in the tropics (Part III). ICLARM Fishbyte 2(1): 17-19.

Pepin, P., 1991. Effect of temperature and size on development, mortality, and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 48: 503-518. https://doi.org/10.1139/f91-065.

Pershing, A. J., Greene, C. H., Jossi, J. W., O’Brien, L, Brodziak, J. K. T., Baily, B.A., 2005. Interdecadal variability in the Gulf of Maine zooplankton community, with potential impacts on fish recruitment. ICES J. Mar. SCi. 62:1511-1523. https://doi.org/10.1016/j.icesjms.2005.04.025.

Quinn, T. J., Deriso, R. B., 1999. Quantitative fish dynamics. Oxford University Press. 542 pages.

R Development Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/.

Richkus, W. A., 1974. Factors influencing the seasonal and daily patterns of Alewife (Alosa pseudoharengus) migration in a Rhode Island river. J. Fish. Res Boad Can. 31:14851497. https://doi.org/10.1139/f74-178.

Rosset, J., Roy, A. H., Gahagan, B. I., Whiteley, A. R., Armstrong, M. P., Sheppard, J. J., Jordaan, A., 2017. Temporal patterns of migration and spawning of river herring in coastal Massachusetts. Trans. Am. Fish. Soc 146: 1101-1114. https://doi.org/10.1080/00028487.2017.1341851.

Savoy, T, Crecco, V., 1995. Factors affecting the recent declined of blueback and American shad in the Connecticut River. A report to the Atlantic States Marine Fisheries Commission, Washington, DC.

Schmidt, R. E., Jessop, B. M., Hightower, J. E., 2003. Status of river herring stocks in large rivers. In: Limburg, K. E., Waldman, J. R., editors, Biodiversity, Status and Conservation of the World's Shads. Am. Fish. Soc. Symp. 35:171-182.

Sheppard, J. J., Bednarski, M. S., 2015. Utility of single-channel electronic resistivity counters for monitoring river herring populations. N. Am. J. Fish. Manage. 35: 1144-1151. https://doi.org/10.1080/02755947.2015.1084407.

Stewart, D. J., Binkowski, F. P., 1986. Dynamics of consumption and food conversion by Lake Michigan alewives: an energetics-modeling synthesis. Trans. Am. Fish. Soc. 115: 643661. https://doi.org/10.1577/1548-8659(1986)115<643:DOCAFC>2.0.CO;2.

Stewart, D. J., Kitchell, J. F., Rottiers, D. V., Edsall, T. A., 1983. An energetics model for lake trout, Salvelinus namaycush: application to the Lake Michigan population. Can. J. Fish. Aquat. Sci. 40: 681-698. https://doi.org/10.1139/f83-091.

Tommasi, D., Nye, J., Stock, C., Hare, J. A., Alexander, M., Drew, K., 2015. Effect of environmental condition on juvenile recruitment of alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis) in freshwater: a coastwide perspective. Can. J. Fish. Aquat Sci. 72:1037-1047. https://doi.org/10.1139/cjfas-2014-0259.

Turner, S. M., Limburg, K. E.,2012. Comparison of juvenile alewife growth and movement in a large and a small watershed. Mar. Coast. Fish: Dyn. Manage. Eco. Sci. 4: 337-345. https://doi.org/10.1080/19425120.2012.675974.

Turner, S. M., Limburg, K. E., 2016. Juvenile river herring habitat use and marine emigration trends: comparing populations. Oecologia 180: 77-89. https://doi.org/10.1007\%2Fs00442-015-3443-y.

Van Houwelingen, H. C., Boshuizen, H.C, Capannesi, M., 2011. Sensitivity analysis of statetransition models: how to deal with a large number of inputs. Comput. Biol. Med. 41:838-842. https://doi.org/10.1016/j.compbiomed.2011.07.001.

Walter s, A. W., Barnes, R. T., Post, D. M., 2009. Anadromous alewives (Alosa pseudoharengus) contribute marine-derived nutrients to coastal stream food webs. Can. J . Fish. Aquat. Sci.66: 439-448. https://doi.org/10.1139/F09-008.

Watermeyer, K. E., Jarre, A., Shannon, L. J., Mulumba, P. Botha, J., 2018. A frame-based modeling approach to understanding changes in the distribution and abundance of sardine and anchovy in the southern Benguela. Ecol. Model. 371: 1-17. https://doi.org/10.1016/j.ecolmodel.2017.12.017.

Yako, L. A., M. E. Mather, and F. Juanes., 2002. Mechanisms for migration of anadromous herring: an ecological basis for effective conversation. Ecol. Appl. 12: 521-534. https://doi.org/10.1890/1051-0761(2002)012[0521:MFMOAH]2.0.CO;2.

Zueg, S. C., Bergman, P. S., Cavallo, B. J., Jones, K. S., 2012. Application of a life cycle simulation model to evaluate impacts of water management and conservation actions on an endangered population of Chinook salmon. Environ. Model. Assess. 17: 455-467. https://doi.org/10.1007/s10666-012-9306-6.

Figure Captions

Figure 1. Trends in Alewife A) run size for the Monument and Mattapoisett rivers in Massachusetts, B) mean total length (mm) for the Monument River and Stony Brook, C) mean age of female and male Alewives for the Monument River, and D) total mortality rates estimated from a statistical escapement-at-age model for the Monument River stock (Nelson et al., 2011) updated with data from 2011-2015 (ASMFC, 2017).

Figure 2. Schematic of model processes for the A) juvenile/adult and B) egg, yolk-sac, post-larval/young-of-the-year sub-models. M is natural mortality, $C C$ is carrying-capacity mortality, and ΔL is change in body length (growth).

Figure 3. Plots of Morris σ versus Morris μ for six output variables: run size, adult mean lengths in the river, run sex ratio, total egg abundance, YOY abundance exiting lake, and age-1 mean length on May 1.

Figure 4. Comparison of model predictions to observed literature and field data for A) first day of run initiation in the Parker River (PR) reported in Cole et al. (1978), Annaquatucket River (AR) reported by Richkus (1974), and multiple rivers observed by Rosset et al. (2017), B) grand mean age (minimum and maximum of mean ages from observed (Cole et al. 1978) and simulated years 1972-1978) of male and female Alewife in the Parker River, C) first day of hatching and D) mean lengths (and 95% percentiles) of age- 1 Alewife. Note that, although variable, the first day of hatching becomes earlier over time as a result of increasing water temperatures (see Supplemental Document Section 15-17).

Figure 5. Derived mortality rates used in the three simulation scenarios. Bycatch mortality represents the annual exploitation fraction, and those for in-river harvest and Striped Bass represent daily fractions.

Figure 6. Simulated run size, run mean total length of adults and run mean age of females for the three hypotheses examined. Observed data from the Monument River only are shown. See Figure 1 from data from other rivers. Predictions are averages of 75 simulations.

Table 1. Description of Indexes used in the mathematical equations

Index	Definitions	Range
d	Day of year	\{1,..,365\}
p	Platoon	\{1,..,100\}
a	Age	\{1,..,9+\}
r	Region	\{1=Ocean, 2=Estuary, 3=River, 4=Lake \}
x	Sex	\{1=Female, 2=Male
m	Maturity	\{1=Immature, 2=Mature
f	Fleet	\{1=Bottom Trawl, 2=Mid-Water\}
b	Daily Egg Batch	$\left\{\mathrm{d}\left(\mathrm{E}_{\mathrm{d}}\right), . . \mathrm{d}\left(\mathrm{E}_{\text {last }}\right)\right\}$

Table 2. Definitions of symbols used in the mathematical description of the Alewife juvenile/adult simulation sub-model.

Symbol s	Definitions
D	Number of days in the year (365)
$N_{d, p, a, x, m}^{r}$	Numbers of platoon p, age a, sex x and maturity m individuals at the beginning of day d in region r
$M_{p}^{r}, M A, M B, \delta_{r}$	Daily instantaneous natural mortality rate (d^{-1}) for platoon p in region r, intercept and exponent of mortality equation, M multiplier for region r
μ,	Annual fraction of by-catch mortality, daily instantaneous fishing mortality
$L_{d, x, p}$	Total length (mm) of platoon p of sex x on day d
η_{n}, D_{n}	Fraction of by-catch F occurring in month n, number of days in month n
P_{f}	The annual fraction of bycatch attributed to fleet $f\left(P_{2}=1-P_{1}\right)$
$s_{p, f}$	The selectivity at length platoon p in region 1 by fleet f (see Supplementary Document Section 1)
$\Delta L_{d, x, p}, L \infty_{x}, K_{x}, t 0_{x}$	Growth increment (mm/day) of platoon p and $\operatorname{sex} x$ on day d, sex-specific von Bertalanffy growth equation parameters
$L_{x, p}^{o}, g_{d}, g A, g B, g C$	Length of $\operatorname{sex} x$ and platoon p on day 1, fraction of annual growth increment, sine function parameters
ES	Estuary entrance day
rT, ndaysT	Temperature for initiation of run start $\left({ }^{\circ} \mathrm{C}\right)$, number of prior days used in calculation
H, PRED	Fraction of Alewife run that is harvested, fraction of run eaten by a predator
$\theta_{d}, a^{\prime}, b^{\prime}, c r l, c^{\prime}$	Daily fraction of platoon numbers immigrating to river, first day of immigration, peak day of immigration, run length, last day of immigration $\left(a^{\prime}+c r l\right)$
$\sigma_{\varepsilon}^{2}, \rho$	Normal variance for run error sampling, first-order autocorrelation
$r d u r, r l, e d u r, e l, v, \bar{s}$	Days spent in river, river length, days spent in estuary, estuary length, swimming speed (body length/sec), mean body size
sdur, lA, lB, pdays, lC	Spawning duration (days), intercept of spawning duration equation, slope of spawning duration equation, day of year after initiation of emigration expressed as a proportion of run duration, value of sdur for pdays <0.45
$C V_{\text {sdur }}$, spdday	Coefficient of variation for sdur calculation, added delay before spawning begins
sT, Bdur	Lower spawning temperature limit (${ }^{\circ} \mathrm{C}$), days between batches
$\bar{W}_{p}, \bar{B}, W A, W B, \bar{e}, E_{d}$	Mean weight of females of platoon p (grams), mean number of egg batches produced per female, intercept of length-weight equation, slope of lengthweight equation, mean total number of eggs per gram produced per females, total number of eggs produced by spawning females on day d
$p m_{x, a, p}, p m A_{x}, p m B_{x}$	$p m$ is the proportion of mature fish of sex x, age a and length platoon p, intercept of $\operatorname{sex} x$ maturity equation, slope of $\operatorname{sex} x$ maturity equation

Table 3. Equations describing dynamics and processes of the juvenile/adult sub-model.

$N_{d, p, a, x, m}^{r}=N_{d-1, p, a, x, m}^{r} e^{-\sum s_{p, f} F_{d-1, f}-M_{p}^{r} \delta^{r}}, r=1$	JA. 1
$F_{d, f}=\left(\left(-\operatorname{loge} e(1-\mu) \eta_{n}\right) / D_{n}\right) P_{f}$	JA. 2
$M_{p}^{r}=\left(M A \cdot L_{p}^{M B}\right) / D$	JA. 3
$N_{d, p, a, x, 2}^{r}=N_{d-1, p, a, x, 2}^{r} e^{-M_{p}^{r} \delta^{r}}, r=2,4$	JA. 4
$N_{d, p, a, x, 2}^{r}=N_{d-1, p, a, x, 2}^{r}(1-H)(1-P R E D) e^{-M_{p}^{r} \delta^{r}}, r=3$	JA. 5
$L_{d, x, p}=L_{d-1, x, p}+\Delta L_{d-1, x, p}$	JA. 6
$\Delta L_{d, x, p}=\left(L_{\infty, x}-L_{x, p}^{o}\right) \cdot\left(1-e^{-K x}\right) \cdot g_{d}$	JA. 7
$g_{d}=g A+g B * \sin \left(2 \pi \cdot \frac{d-g C}{D}\right) / \sum_{d=1}^{D} g A+g B * \sin \left(2 \pi \cdot \frac{d-g C}{D}\right)$	JA. 8
$N_{d, p, a, x, 2}^{3}=N_{d, p, a, x, 2}^{2} \cdot \theta_{d}$	JA. 9
$N_{d, p, a, x, 2}^{2}=N_{d, x p, a, x, 2}^{2} \cdot\left(1-\theta_{d}\right)$	JA. 10
$p_{d}=\left\{\begin{array}{lc} 2\left(d-a^{\prime}\right) /\left[\left(c^{\prime}-a^{\prime}\right)\left(b^{\prime}-a^{\prime}\right)\right], & d \leq b^{\prime} \\ 2\left(c^{\prime}-d\right) /\left[\left(c^{\prime}-a^{\prime}\right)\left(c^{\prime}-b^{\prime}\right)\right], & d>b^{\prime} \end{array}\right.$	JA. 11
$p_{d}^{*}=\left\{\begin{array}{l} \text { if } d=a^{\prime}, p_{d} \exp ^{\varepsilon_{d}^{*}} \text { where } \varepsilon_{d}^{*}=N\left(0, \sigma_{\varepsilon}^{2}\right) \\ \text { if } d>a^{\prime}, p_{d} \exp ^{\varepsilon_{d}^{*}-\sigma_{\varepsilon}^{2} / 2} \text { where } \varepsilon_{d}^{*}=\varepsilon_{d-1}^{*} \cdot \rho+\sqrt{1-\rho^{2}} \cdot N\left(0, \sigma_{\varepsilon}^{2}\right) \end{array}\right.$	JA. 12
$p_{d}^{\prime}=p_{d}^{*} / \sum_{\substack{d=a \prime \\ c^{\prime}}} p_{d}^{*}$	JA. 13
$\theta_{d}=p_{d}^{\prime} / \sum_{d} p_{d}^{\prime}$	JA. 14
$r d u r=\left\{\begin{array}{l} 1, \text { if } r l /(v \bar{s} \cdot 0.0864)<1 \\ \operatorname{round}(r l /(v \bar{s} \cdot 0.0864), 0), \text { if } r l /(v \bar{s} \cdot 0.0864)>1 \end{array}\right.$	JA. 15
$s m= \begin{cases}e^{l A \cdot(p d a y s-l B)}, & \text { pdays } \geq 0.45 \\ l C & , \text { pdays }<0.45\end{cases}$	JA. 16
s dur $=e^{L N\left(s m,\left(C V_{s d u r} \cdot s m\right)^{2}\right)}$	JA. 17
$E_{d}=\sum_{a} \sum_{p}\left(\bar{W}_{p} \bar{e} / \bar{B}\right) \cdot N_{d, p, a, 1,2}^{4}$	JA. 18
$\bar{W}_{p}=10^{W A+W B \log _{10} L p}$	JA. 19
$p m_{x, a, p}=e^{p m A_{x}+p m B_{x} \cdot L_{x, a, p}} /\left(1+e^{p m A_{x}+p m B_{x} \cdot L_{x, a, p}}\right)$	JA. 20

Table 4. Definitions of symbols used in the mathematical description of the egg, yolk-sac larvae, postlarvae/YOY sub-model.

Symbols	Definitions
$n b$	Number of daily egg batches
$N_{b, d}^{\text {Eggs }}, N_{b, d}^{\text {Yolksac }}$	Number of eggs in batch b on day d, number of yolk-sac larvae from batch b on day d
$M^{\text {Eggs }}, \zeta^{\text {Eggs }}$	Daily instantaneous natural mortality rate for eggs, M multiplier for eggs
$h_{d}, d(b), d(h), o_{d}$	Egg hatching time (days) at temperature on day d, day batch of eggs is laid, day eggs hatch, fraction of eggs that successfully hatch at temperature $\left({ }^{\circ} \mathrm{C}\right)$ on day d
$d h A, d h B$	Hatching time-temperature equation parameters
$o A, o B, o C$	Hatching success -temperature equation parameters
$M^{\text {Yolksac }}, \zeta^{\text {Yolksac }}$	Daily instantaneous natural mortality rate for yolksac larvae, M multiplier for yolksac larvae
$y_{d}, d(y)$	Yolksac absorption time (days) at temperature on day d, day yolksac is fully absorbed
$d y A, d y B$	Yolksac absorption-temperature equation parameters
T_{d}	Water temperature (${ }^{\circ} \mathrm{C}$) on day d
$N_{b, d, p}^{\text {Post,r }}$	Number of post-larvae in platoon p from batch b on day d in region r
l, A, k, k_{b}	Post-larval capacity (larvae per km^{2}), lake area (km^{2}), carrying capacity, batch carrying capacity
$\pi_{b, p}^{\text {Post }}, L_{p}^{\text {Post }}, \Delta L_{p}^{\text {Post }}$	Proportion of post-larvae from batch b in length platoon p, total length (mm) of post-larvae in platoon p, the daily increment of length increase
σ^{2}	variance of $\bar{L}^{\text {Post }}$
$L_{\text {min }}, L_{\text {max }}, \mu_{\text {loge }}, n p$	Minimum length, maximum length, mean length (natural log scale), number of post-larvae length platoons
$M_{b, d, p}^{\text {Post }}, \zeta_{r, 1}^{\text {Post }}, \zeta_{r, 2}^{\text {Post }}$	Daily instantaneous natural mortality rate for post-larvae/YOY of batch b and platoon p on day d, regional M multipliers for post-larvae $\leq 22 \mathrm{~mm} \mathrm{TL}$ and >22 mm TL
$m l, d(s), d(e)$	Post-larvae emigration length, day on which $L_{p}^{\text {Post }} \geq m /$, last day of emigration
ψ_{d}, τ_{d}	Probability of emigration based on temperature at start of day d, proportion emigrating on day d
V, velp 1, velp 2, velp 3	Swimming speed ($\mathrm{cm} / \mathrm{sec}$), equation parameters
$\bar{W}_{p}^{\text {Post }}$	Mean weight (g) of platoon p derived from bioenergetics model
ω_{r}	River and estuary duration multiplier

Table 5. Equations describing dynamics and processes of the egg-YOY sub-model.

$$
N_{b, d}^{\text {Eggs }}=N_{b, d-1}^{\text {Eggs }} e^{-M^{\text {Eggs }} \zeta^{\text {Eggs }}}
$$

$$
\begin{equation*}
h_{d}=d h A \cdot\left(1.8 T_{d}+32\right)^{-d h B} \tag{EY. 2}
\end{equation*}
$$

$d(h)=\sum_{j=d(b)}^{d-1} \frac{1}{h_{j}} \geq 1$
$o_{d}=\left(o A+o B\left(1.8 T_{d}+32\right)-o C \cdot\left(1.8 T_{d}+32\right)^{2}\right) / 100$
EY. 4
$N_{b, d}^{\text {Yolksac }}=\left\{\begin{array}{l}N_{b, d-1}^{\text {Eggs }} e^{-M^{\text {Eggs }} \zeta^{\text {Eggs }}} o_{d-1}, \quad d=d(h) \\ N_{b, d-1}^{\text {Yolksac }} e^{-M^{\text {Yolksac }} \zeta^{\text {Yolksac }}}, \quad d>d(h)\end{array}\right.$
EY. 5
$y_{d}=d y A \cdot T_{d}^{d y B / T_{d}}$
EY. 6
$d(y)=\sum_{j=d(h)}^{d-1} \frac{1}{y_{j}} \geq 1$
EY. 7

EY. 8
$k_{b}=k / n b$
EY. 9
$N_{b, d}^{\text {Post }, 4}=\left\{\begin{array}{ll}k_{b}, & N_{b, d}^{\text {Post }, 4} \geq k_{b} \\ N_{b, d}^{\text {Post }, 4}, & N_{b, d}^{\text {Post }, 4}<k_{b}\end{array}\right\}$
EY. 10
$L_{p}^{\text {Post }}=\left\{\begin{array}{l}L_{\min }, \quad p=1 \\ L_{p-1}^{\text {Post }}+\frac{L_{\max }-L_{\min }}{n p-1}, p>1 \& p<n p \\ L_{\max }, \quad p=n p\end{array}\right.$
$f\left(L_{p}^{\text {Post }}\right)=1 / L_{p}^{\text {Post }} \sigma \sqrt{2 p i} \cdot \exp \left(-\left(\operatorname{loge} L_{p}^{\text {Post }}-\mu_{\mathrm{log} e}\right)^{2} / 2 \sigma^{2}\right)$
$\pi_{b, p}^{\text {Post }}=f\left(L_{p}^{\text {Post }}\right) / \sum_{p=1}^{n p} f\left(L_{p}^{\text {Post }}\right)$
$N_{b, d, p}^{\text {Post,4 }}=$ multinomial $\left(\pi_{b, p}^{\text {Post }}, N_{b, d}^{\text {Post,4 }}\right)$
$N_{b, d, p}^{\text {Post } r}=N_{b, d-1, p}^{\text {Post. }} e^{-M_{d-1, p}^{\text {Post }} \text { Post }}$

$$
\begin{align*}
& M_{d, p}^{\text {Post }}=\left\{\begin{array}{l}
M P 1 A \cdot \exp ^{M P 1 B * T} T_{d}\left(L_{p}^{\text {Post }}\right)^{-M P 1 C} \zeta_{r, 1}^{\text {Post }}, \quad L_{p}^{\text {Post }} \leq 22 \mathrm{~mm} T L, \\
\left(M P 2 A \cdot\left(L_{p}^{\text {Post }}\right)^{-M P 2 B}\right) / D \zeta_{r, 2}^{\text {Post }}, \quad L_{p}^{\text {Post }}>22 \mathrm{~mm} T L
\end{array}\right. \tag{EY. 16}\\
& N_{b, d, p}^{\text {Post }, 3}=\frac{\psi_{d} \tau_{d}}{\sum_{d}^{d(e)} \psi_{d} \tau_{d}} N_{b, d, p}^{\text {Post, } 4}, \text { where } L_{p}^{\text {Post }}>m l \tag{EY. 17}\\
& \psi_{d \geq d(s)}= \begin{cases}1, & \frac{\exp ^{u A-u B \cdot T_{d}}}{1+\exp ^{u A-u B \cdot T_{d}}} \geq 0.5 \\
0, & \frac{\exp ^{u A-u B \cdot T_{d}}}{1+\exp ^{u A-u B \cdot T_{d}}}<0.5\end{cases} \tag{EY. 18}\\
& n_{d}=\left\{\begin{array}{lc}
N B(1, m u=10.71, \text { size }=0.244), & \text { rainfall }<18 \mathrm{~mm} \\
N(1, \text { mean }=473, \text { sd }=183.05), & \text { rainfall } \geq 18 \mathrm{~mm} \\
N B(1, m u=10.71, \text { size }=0.244), & d>285
\end{array}\right. \tag{EY. 19}\\
& \tau_{d}=n_{d-1} / \sum_{j=d-1}^{d(e)-1} n_{j-1} \tag{EY. 20}\\
& N_{b, d, p}^{P o s t, 4}=N_{b, d, p}^{P o s t, 4}-N_{b, d, p}^{P o s t, 3} \\
& \text { EY. } 20 \\
& V=\operatorname{velp} 1 \cdot \bar{W}_{p}^{\text {Post }}{ }^{\text {velp } 2} e^{\text {velp } 3 \cdot T_{d}} \\
& \text { EY. } 22 \\
& r d u r=\left\{\begin{array}{l}
1, \quad V / 8.64 e 9 / r l \cdot \varpi_{3}<1
\end{array}\right. \\
& \text { edur }= \begin{cases}1, & V / 8.64 e 9 / e l \cdot \varpi_{2}<1 \\
\operatorname{round}\left(V / 8.64 e 9 / e l \cdot \varpi_{2}, 0\right), & V / 8.64 e 9 / e l \cdot \varpi_{2} \geq 1\end{cases}
\end{align*}
$$

Table 6. Definitions of symbols used in the mathematical description of bioenergetics sub-model.

Symbol	Definitions
WAS, WBS	For $L_{p} \leq 22 \mathrm{~mm} T L$, intercept and coefficient for length-weight equation
WAL, WBL	For $L_{p}>22 \mathrm{~mm} T L$, intercept and coefficient for length-weight equation
$C_{p}, C_{\text {max }}$	Consumption rate of platoon p ($\mathrm{g} / \mathrm{g} /$ day), maximum feeding rate ($\mathrm{g} / \mathrm{g} /$ day)
$p r_{p}, p s, \alpha, \alpha^{\prime}, \beta^{\prime}, \Omega_{r}$	Proportion of maximum consumption for platoon p, base proportion maximum consumption, intercept of $p r$ versus length equation, intercept of $p r$ versus density equation, slope of $p r$ versus density equation, regional growth multiplier
$f(T C), f(T R)$	Temperature dependence function for consumption, respiration
$K A, K B$	Increasing portion of temperature dependence function, decreasing portion of temperature dependence function
EDP	Energy density of prey (joules/g)
$C A, C B$	Intercept and exponent of mass dependence function
CQ, CK1	Temperature at which temperature dependence is a small fraction of the maximum rate, temperature dependence parameter
CTO, CK4	Water temperature corresponding to 0.98 of the maximum consumption rate, temperature dependence parameter
CTL, CTM	Temperature at which dependence is some reduced fraction of $C K 4$ of the maximum rate, temperature at which dependence is still 0.98 of the maximum
R_{p}	Specific rate of respiration (joules/g/day)
$R A S, R B S, R Q S$	For $L_{p} \leq 49 \mathrm{~mm} T L$, intercept of mass function ($\mathrm{g} / \mathrm{g} /$ day), slope of mass function, approximates the Q10 $\left(1 /{ }^{\circ} \mathrm{C}\right)$
$R A L, R B L, R Q L$	For $L_{p}>49 \mathrm{~mm} T L$, intercept of mass function ($\mathrm{g} / \mathrm{g} /$ day), slope of mass function, approximates the Q10 $\left(1 /{ }^{\circ} \mathrm{C}\right)$
ACT, VEL	Activity multiplier as a function swimming speed, swimming speed (cm/sec)
RTO	Coefficient for swimming speed dependence on metabolism ($\mathrm{sec} / \mathrm{cm}$)
RK1, RK4, RTL	Intercept for swimming speed above cutoff temperature ($\mathrm{cm} / \mathrm{sec}$), mass dependence coefficient for swimming speed at all water temperatures, cutoff temperature at which the activity relationship changes $\left({ }^{\circ} \mathrm{C}\right)$
AM, BACT	Intercept for swimming speed versus mass relationship at temperature $<R T L\left(\mathrm{~cm} / \mathrm{sec}\right.$ for a 1 gram fish at $\left.0^{\circ} \mathrm{C}\right)$, water temperature dependence coefficient of swimming speed at temperatures below $R T L\left(1 /{ }^{\circ} \mathrm{C}\right)$
OC	Oxycalorific coefficient used to convert grams to joule equivalents
$E R_{p}, E R A$	Egestion rate (g/g/day) of platoon p, constant proportion of C
$U_{p}, U A, S_{p}, S D A$	Excretion (joules/g/day), constant proportion of assimilated energy, proportion assimilated energy lost to specific dynamic action, specific dynamic action
$E D, E D A_{d}, E D B_{d}$	Energy density of Alewife (joules/g), intercept of length-ED relationship for day d, slope of length-ED relationship for day d
$\widetilde{T}_{p}, T a, T b, T c$	Optimal temperature $\left({ }^{\circ} \mathrm{C}\right)$ for platoon p, asymptote parameters for optimal temperature versus platoon length equation

Table 7. Equations describing the bioenergetics sub-model.

$$
\begin{align*}
& \bar{W}_{p}=\left\{\begin{array}{l}
e^{W A S+W B S \cdot \log e(L p)}, L_{p} \leq 22 \mathrm{~mm} T L, \\
e^{W A L+W B L \cdot \log e(L p)}, L_{p}>22 \mathrm{~mm} T L,
\end{array}\right. \\
& C_{p}=C_{m a x, p} \cdot E D P \cdot p r_{p} \cdot f\left(T_{d}\right) \\
& C_{\max , p}=\left\{\begin{array}{l}
0.8464, \quad \bar{W}_{p}<1 g \\
C A \cdot \bar{W}_{p}^{C B}, \quad \bar{W}_{p} \geq 1 g
\end{array}\right. \\
& p r_{p}=\left\{\begin{array}{l}
p s \cdot \Omega_{r}, L_{p} \leq 22 m m T L \\
\left(\alpha+\beta \cdot L_{p}\right) \cdot \Omega_{r}, L_{p}>22 m m T L
\end{array}\right. \\
& \beta=\left\{\begin{array}{l}
0.0021, \quad \alpha^{\prime}+\beta^{\prime} / \sum_{b} N_{b, d}^{\text {Post }, 4}<0.0021 \\
\alpha^{\prime}+\beta^{\prime} / \sum_{b} N_{b, d}^{\text {Post }, 4}, \quad 0.0021 \leq \alpha^{\prime}+\beta^{\prime} / \sum_{b} N_{b, d}^{\text {Post }, 4} \leq 0.0026 \\
0.0026, \quad \alpha^{\prime}+\beta^{\prime} / \sum_{b} N_{b, d}^{\text {Post }, 4} \geq 0.0026
\end{array}\right. \\
& f\left(T_{d}\right)=K A \cdot K B \\
& K A=\frac{C K 1 \cdot L_{1}}{\left(1+C K 1\left(L_{1}-1\right)\right.} \\
& L 1=\exp ^{G_{1} \cdot\left(T_{d}-C Q\right)} \\
& G_{1}=\frac{1}{C T O-C Q} \ln \left(\frac{0.98(1-C K 1)}{C K 1 \cdot 0.02}\right) \\
& K B=\frac{C K 4 \cdot L_{2}}{1+C K 4\left(L_{2}-1\right)} \\
& L_{2}=\exp ^{G_{2}\left(C T L-T_{d}\right)} \tag{BE. 11}\\
& G_{2}=\frac{1}{C T L-C T M} \ln \left(\frac{0.98(1-C K 4)}{C K 4 \cdot 0.02}\right) \tag{BE. 12}\\
& R_{p}= \begin{cases}R A S\left(\bar{W}_{p}^{\text {Post }}\right)^{R B S} \cdot A C T \cdot f(T R)_{d} \cdot O C, & L p \leq 49 \mathrm{~mm} T L \\
R A L\left(\bar{W}_{p}^{\text {Post }}\right)^{R B L} \cdot A C T \cdot f(T R)_{d} \cdot O C, & L p>49 \mathrm{~mm} \mathrm{TL}\end{cases} \tag{BE. 13}\\
& A C T=\left\{\begin{array}{l}
1, L_{p} \leq 49 \mathrm{mmTL} \\
\exp \quad \text { RTO.VEL }, L_{p}>49 \mathrm{mmTL}
\end{array}\right. \tag{BE. 14}\\
& V E L=\left\{\begin{array}{l}
R K 1\left(\bar{W}_{p}^{\text {Post }}\right)^{R K 4}, T_{d}>R T L \\
A_{m} \bar{W}_{p}^{\text {Post }}{ }^{R K 4} \exp ^{B A C T \cdot T_{d}}, T_{d} \leq R T L
\end{array}\right. \\
& \text { BE. } 15
\end{align*}
$$

$$
\begin{aligned}
& f(T R)_{d}=\exp ^{R Q \cdot T_{d}} \\
& E D_{d, p}=\left\{\begin{array}{l}
E D A 1+E D B 1 \cdot L_{d, p}, d \leq 273 \\
E D A 2+E D B 2 \cdot L_{d, p}, d>273
\end{array}\right. \\
& \text { BE. } 22 \\
& L_{d, p}=\left\{\begin{array}{l}
e^{\left(\log e\left(\bar{W}_{d, p}^{\text {Post }}\right)+W A S\right) / W B S}, L_{d-1, p} \leq 22 \mathrm{~mm} T L \\
e^{\left(\log e\left(\bar{W}_{d, p}^{\text {Post }}\right)+W A L\right) / W B L}, L_{d-1, p}>22 \mathrm{~mm} T L
\end{array}\right. \\
& \tilde{T}_{p}= \begin{cases}T_{a} /\left(1+e^{T_{b}+T_{c} L_{p}}\right), & L_{p}<42 \mathrm{~mm} \mathrm{TL} \\
18.2, & L_{p} \geq 42 \mathrm{~mm} \mathrm{TL}\end{cases}
\end{aligned}
$$

Table 8. Results of Morris sensitivity analysis showing the top-twenty $\mu \mathrm{s}$ for six output variables. $\mathrm{TL}=$ total length (mm) and $\mathrm{N}=$ abundance. See Figure 3 for more details.

Parameter	Run Size	Parameter	Adult Mean TL	Parameter	Sex Ratio	Parameter	Egg	Parameter	$\begin{gathered} \text { YOY } \\ \mathrm{N} \end{gathered}$	Parameter	Age-1 Mean TL
MB	1060136	Ω_{2}	23.14	p ?	0.448	Ω_{2}	1.14 E 11	k	6129498	$C A$	68.99
CA	1032472	$C B$	11.34	pmB1	0.317	$M B$	6.60 E 10	ξ_{1}	3262671	Ω_{2}	46.27
RA50	826973	$M B$	8.10	$p m B 2$	0.293	$C B$	6.29 E 10	$C A$	2637403	RTO	39.91
k	698598	$C A$	6.64	pmA2	0.267	$C A$	5.81 E 10	MP2B	2046166	RAL	39.89
Ω_{2}	639013	EDA273	6.53	pmA1	0.266	ξ_{1}	5.18 E 10	EDP	1848882	EDP	37.70
MP2B	555478	b^{\prime}	5.56	$M B$	0.159	MP2B	4.05 E 10	EDA273	1414878	ERA	22.89
ξ_{1}	475550	pmA2	3.65	Ω_{2}	0.152	$R A L$	3.96 E 10	b^{\prime}	1321743	$C B$	19.85
α	457451	pmB2	3.24	$C A$	0.133	k	3.82 E 10	$\mu_{\text {loge }}$	1244198	RAS	19.77
ERA	430475	EDB273	2.46	b^{\prime}	0.112	ERA	3.21 E 10	ρ	1040644	α	16.95
RTO	428328	ERA	2.30	K_{2}	0.109	\bar{B}	2.84 E 10	v	1032588	EDA273	16.83
CB	417892	v	2.18	MP2B	0.107	α	2.55 E 10	$M B$	968857	RQS	16.58
RQS	348760	ξ_{1}	2.08	K_{1}	0.086	EDB274	2.32 E 10	ERA	954126	$U A$	13.52
EDP	333956	ndaysT	1.78	EDP	0.077	velp1	2.17 E 10	pmA1	833169	b^{\prime}	12.43
RQL	276194	pmA1	1.72	v	0.067	RTO	2.11 E 10	$p s$	767496	$\mu_{\text {loge }}$	12.03
velp1	275004	MP2B	1.61	$L_{\infty, 1}$	0.065	EDA273	2.07E10	RAS	750182	SDA	11.76
UA	269654	pmB1	1.60	$L_{\infty, 2}$	0.063	\bar{e}	1.99 E 10	RQS	682251	$p m A 2$	11.29
EDA273	266816	dhB	1.59	nyrsT	0.055	RQS	1.94 E 10	RAL	680269	velp1	11.20
ρ	263594	EDB274	1.51	ρ	0.052	EDP	1.56 E 10	MP1C	650904	velp3	9.85
EDB274	248770	RQS	1.50	EDA273	0.051	UA	1.46 E 10	RTO	647212	RQL	9.84
ndaysT	239476	$R A L$	1.49	RAS	0.050	RQL	1.44 E 10	Ω_{2}	615851	RBL	9.44

